Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Environ Res Public Health ; 19(20)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2082083

ABSTRACT

(1) Background: Vaccine literacy (VL) of the public is crucial to deal with anti-vaccination rhetoric. This study aims to (1) develop a Chinese COVID-19 Vaccine Literacy Scale and examine the factor structure and psychometric characteristics, and (2) explore the association between COVID-19 VL and sociodemographic characteristics and other variables; (2) Methods: An online cross-sectional survey was conducted among 362 Chinese residents from 23 May 2022 to 31 May 2022 using snowball sampling; (3) Results: Exploratory and confirmatory factor analysis indicated that the scale of 15 items, consisting of three factors, functional, interactive and critical vaccine literacy, explained 63.3% of the total variance. Cronbach's α coefficient was 0.885 for the overall scale: 0.838, 0.891, and 0.857 for three subscales, respectively. The results showed a medium level of vaccine literacy (M = 3.71, SD = 0.72) and significant differences among functional, interactive, and critical vaccine literacy (p < 0.001). The level of vaccine literacy grew with the level of education (p < 0.001) and age (p = 0.049). Men, participants who were single, or those living in rural areas had a lower level of vaccine literacy; (4) Conclusions: The Chinese COVID-19 VL Scale has adequate validity and reliability for assessing vaccine literacy among Chinese residents. A deep understanding of the factors that affect vaccine literacy is needed.


Subject(s)
COVID-19 , Health Literacy , Male , Humans , COVID-19 Vaccines , Reproducibility of Results , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/prevention & control , Psychometrics/methods , China , Surveys and Questionnaires
2.
Cell Metab ; 34(3): 424-440.e7, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1676683

ABSTRACT

Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Imatinib Mesylate/therapeutic use , Metabolic Diseases/drug therapy , Methazolamide/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Imatinib Mesylate/pharmacology , Male , Metabolic Diseases/metabolism , Metabolic Diseases/virology , Methazolamide/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects
3.
Eur Radiol ; 32(1): 205-212, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1293361

ABSTRACT

OBJECTIVES: Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial intelligence system to predict future deterioration to critical illness in COVID-19 patients. METHODS: An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19. RESULTS: A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting individual COVID-19 patients' to critical illness. The AI system successfully stratified the patients into high-risk and low-risk groups with distinct progression risks (p < 0.0001). CONCLUSIONS: Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized treatment. KEY POINT: • AI system can predict time to critical illness for patients with COVID-19 by using CT imaging and clinical data.


Subject(s)
COVID-19 , Artificial Intelligence , Humans , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
4.
Clin Nutr ; 41(12): 3007-3015, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1260691

ABSTRACT

BACKGROUND: About 10-20% of patients with Coronavirus disease 2019 (COVID-19) infection progressed to severe illness within a week or so after initially diagnosed as mild infection. Identification of this subgroup of patients was crucial for early aggressive intervention to improve survival. The purpose of this study was to evaluate whether computer tomography (CT) - derived measurements of body composition such as myosteatosis indicating fat deposition inside the muscles could be used to predict the risk of transition to severe illness in patients with initial diagnosis of mild COVID-19 infection. METHODS: Patients with laboratory-confirmed COVID-19 infection presenting initially as having the mild common-subtype illness were retrospectively recruited between January 21, 2020 and February 19, 2020. CT-derived body composition measurements were obtained from the initial chest CT images at the level of the twelfth thoracic vertebra (T12) and were used to build models to predict the risk of transition. A myosteatosis nomogram was constructed using multivariate logistic regression incorporating both clinical variables and myosteatosis measurements. The performance of the prediction models was assessed by receiver operating characteristic (ROC) curve including the area under the curve (AUC). The performance of the nomogram was evaluated by discrimination, calibration curve, and decision curve. RESULTS: A total of 234 patients were included in this study. Thirty-one of the enrolled patients transitioned to severe illness. Myosteatosis measurements including SM-RA (skeletal muscle radiation attenuation) and SMFI (skeletal muscle fat index) score fitted with SMFI, age and gender, were significantly associated with risk of transition for both the training and validation cohorts (P < 0.01). The nomogram combining the SM-RA, SMFI score and clinical model improved prediction for the transition risk with an AUC of 0.85 [95% CI, 0.75 to 0.95] for the training cohort and 0.84 [95% CI, 0.71 to 0.97] for the validation cohort, as compared to the nomogram of the clinical model with AUC of 0.75 and 0.74 for the training and validation cohorts respectively. Favorable clinical utility was observed using decision curve analysis. CONCLUSION: We found CT-derived measurements of thoracic myosteatosis to be associated with higher risk of transition to severe illness in patients affected by COVID-19 who presented initially as having the mild common-subtype infection. Our study showed the relevance of skeletal muscle examination in the overall assessment of disease progression and prognosis of patients with COVID-19 infection.


Subject(s)
COVID-19 , Humans , Retrospective Studies , Area Under Curve , Nomograms , ROC Curve
6.
Radiology ; 296(3): E156-E165, 2020 09.
Article in English | MEDLINE | ID: covidwho-729427

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiologists , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , China , Diagnosis, Differential , Female , Humans , Infant , Infant, Newborn , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Philadelphia , Pneumonia/diagnostic imaging , Radiography, Thoracic , Radiologists/standards , Radiologists/statistics & numerical data , Retrospective Studies , Rhode Island , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL